4,262 research outputs found

    Memorable And Secure: How Do You Choose Your PIN?

    Get PDF
    Managing all your PINs is difficult. Banks acknowledge this by allowing and facilitating PIN changes. However, choosing secure PINs is a difficult task for humans as they are incapable of consciously generating randomness. This leads to certain PINs being chosen more frequently than others, which in turn increases the danger of someone else guessing correctly. We investigate different methods of supporting PIN changes and report on an evaluation of these methods in a study with 152 participants. Our contribution is twofold: We introduce an alternative to system-generated random PINs, which considers people’s preferred memorisation strategy, and, secondly, we provide indication that presenting guidance on how to avoid insecure PINs does indeed nudge people towards more secure PIN choices when they are in the process of changing their PINs

    Real-time dynamics of clusters. III. I_2Ne_n (n=2–4), picosecond fragmentation, and evaporation

    Get PDF
    In this paper (III) we report real-time studies of the picosecond dynamics of iodine in Ne clusters I*2Nen(n = 2–4) --> I*2 + nNe. The results are discussed in relation to vibrational predissociation (VP), basic to the I2X systems, and to the onset of intramolecular vibrational-energy redistribution (IVR). The latter process, which is a precursor for the evaporation of the host atoms or for further fragmentation, is found to be increasingly effective as the cluster size increases; low-energy van der Waals modes act as the accepting (bath) modes. The reaction dynamics for I2Ne2 are examined and quantitatively compared to a simple model which describes the dynamics as consecutive bond breaking. On this basis, it is concluded that the onset of energy redistribution is observed in I2Ne2. Comparison of I2Ne and I2Ne2 to larger clusters (n=3,4) is accomplished by introducing an overall effective reaction rate. From measurements of the rates and their dependence on v[script ']i, the initial quantum number of the I2 stretch, we are able to examine the dynamics of direct fragmentation and evaporation, and compare with theory

    Real-time dynamics of clusters. II. I_2X_n (n=1; X=He, Ne, and H_2), picosecond fragmentation

    Get PDF
    In this second paper (II) of a series, we report our picosecond time-resolved studies of the state-to-state rates of vibrational predissociation in iodine–rare gas (van der Waals) clusters. Particular focus is on the simplest system, I2He, which serves as a benchmark for theoretical modeling. Comparisons with I2Ne and I2H2 are also presented. The results from measurements made in real time are compared with those deduced from linewidth measurements, representing a rare example of a system studied by both methods under identical conditions and excited to the same quantum (v[script ']i) states. The discrepancies are discussed in relation to the origin of the broadening and preparation of the state. The rates as a function of v[script ']i display a nonlinear behavior which is examined in relation to the energy-gap law. The measured absolute rates and their dependence on v[script ']i are compared with numerous calculations invoking classical, quantum, and semiclassical theories. In the following paper (III in this series), the cluster size of the same system, I2Xn, is increased (n=2–4) and the dynamics are studied

    Direct observation of the picosecond dynamics of I_2-Ar fragmentation

    Get PDF
    Picosecond real‐time observations of the dynamics of I_2–Ar fragmentation are reported. The state‐to‐state rates, k(ν^i,,ν^f,), are directly measured and related to the homogeneous broadening of the initial state, and to product state distributions in the exit channel. Comparisons with different theories of vibrational (and electronic) predissociation are made

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47

    Exponential algorithmic speedup by quantum walk

    Full text link
    We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time.Comment: 24 pages, 7 figures; minor corrections and clarification
    corecore